
P R O G R A M M I N G S K I L L S : 2 0 2 1 - 2 0 2 2

National Curriculum Aims:

• Can understand and apply the fundamental principles and concepts of computer science, including abstraction, logic, algorithms and data representation

• Can analyse problems in computational terms, and have repeated practical experience of writing computer programs in order to solve such problems

National Curriculum Aims Key Stage 1:

• Understand what algorithms are, how they are implemented as programs on digital devices, and that programs execute by following precise and unambiguous instructions.

• Create and debug simple programs.

• Use logical reasoning to predict the behaviour of simple programs.

 Year One Year Two
Understand what algorithms

are, how they are

implemented as programs on

digital devices, and that

programs execute by

following precise and

unambiguous instructions.

• Understand what algorithms are

• Understand how algorithms are implemented on digital devices

• Understand how algorithms are implemented on digital devices

• Understand that programs execute by following precise and unambiguous instructions

Create and debug simple

programs.

• Write own simple algorithm

• Program a device

• Reorder a sequence of instructions to debug an algorithm

• Create programs on a variety of digital devices (e.g. BeeBots, iPads)

• Use sequencing to write own simple algorithm

• Identify and fix simple bugs

• Say what works and what doesn’t work about my algorithm
Use logical reasoning to

predict the behaviour of

simple programs

• Read through simple instructions

• Say what it might do and give a reason

• Read through instructions

• Say what it might do and give a reason

Computational thinking

concepts

Understand and use computational thinking concepts:

• Patterns

• Algorithm

•

Understand and use computational thinking concepts:

• Patterns

• Algorithm

Example activities and

resources

• Algorithm dance moves activity (Barefoot)

• Bee-Bot tinkering activity (Barefoot)

• Bee-Bot basics activity (Barefoot)

• Lego building algorithm activity (Barefoot)

• ScratchJr tinkering activity (Barefoot)

• Run a Race (ScratchJr)

• Daisy the Dinosaur app

• Crazy character algorithms (Barefoot)

• Bee-Bots 1,2,3 programming (Barefoot)

• Jam sandwich bot (http://code-it.co.uk/unplugged/jamsandwich)

• ScratchJr Knock-Knock joke (Barefoot)

• Scratch Jr activities (http://scratchjr.org/teach/activities)

National Curriculum Aims Key Stage 2

• Design, write and debug programs that accomplish specific goals, including controlling or simulating physical systems; solve problems by decomposing them into smaller parts

• Use sequence, selection, and repetition in programs; work with variables and various forms of input and output

• Use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs

• Understand computer networks including the internet; how they can provide multiple services, such as the World Wide Web

• Appreciate how [search] results are selected and ranked

 Year Three Year Four Year Five Year Six

Design, write and debug

programs that

accomplish specific

goals, including

controlling or simulating

physical systems; solve

problems by

decomposing them into

smaller parts

• To create a sequence of commands to

produce a given outcome (Scratch

musical instrument, maze program)

• To use indefinite loops and count-

controlled loops to produce a given

outcome (program, game)

• Design and write a simulation

• Understand some situations in which a

simulation might be used

• Give some examples of physical systems

• Control a physical system (micro:bit)

• Solve problems by decomposing them into

smaller parts

• Design and write an animation with two or

more sprites

• Design and write a game

• Solve problems by decomposing them into

smaller parts

Use sequence,

selection, and

repetition in

programs; work with

variables and various

forms of input and

output

• To explain what a sequence is

• To identify that a program needs a

sequence of commands

• To order commands in a program

• To explain that the order of commands

can affect the outcome

• To identify tasks that include repetition as

part of a sequence

• To explain we can use a loop command in

a program to repeat instructions

• To identify a loop within a program

• To use indefinite loops and count-

controlled loops to produce a given

outcome

• To explain the importance of instruction

order in a loop

• Use sequence, selection and repetition

within a program

• Use variables to keep score within a game

• Use a micro:bit to investigate input and

output

• Use sequence, selection and repetition

within a program

• Use variables to keep score and time limits

within a game

Use logical reasoning

to explain how some

simple algorithms

work and to detect

and correct errors in

algorithms and

programs

 Use logical reasoning to:

• Detect an error in a simple algorithm

Use logical reasoning to:

• Explain how a simple algorithm works

• Work systematically to detect and correct

errors in own algorithms (debugging)

Use logical reasoning to:

• Explain how given algorithms work

• Work systematically to detect and correct

errors in own and given algorithms and

programs

Use logical reasoning to:

• Explain how sections of peer and given

algorithms work

• Detect and correct errors in own, given

and peer algorithms and programs

Computational

thinking concepts

Understand and use computational thinking

concepts:

• Algorithms

• Abstraction

• Decomposition

• Patterns

Understand and use computational thinking

concepts:

• Algorithms

• Logic

• Patterns

• Abstraction

• Decomposition

Understand and use computational thinking

concepts:

• Algorithms

• Logic

• Patterns

• Abstraction

• Decomposition

• Evaluation

Understand and use computational thinking

concepts:

• Algorithms

• Logic

• Patterns

• Abstraction

• Decomposition

• Evaluation

Example activities

and resources

NCCE Programming – Sequencing in music

NCCE Programming – Events and actions

https://teachcomputing.org/curriculum

Fossil Formation animation (Barefoot)

Animated poem decomposition (Barefoot)

NCCE Programming – Repetition in shapes

NCCE Programming – Repetition in games

https://teachcomputing.org/curriculum

Make Music (Scratch)

Maths quiz selection (Barefoot)

• Solar System simulation (Barefoot)

• Classroom Sound Monitor (Barefoot)

BBC Bitesize (Controlling physical systems)

https://www.bbc.co.uk/bitesize/clips/z2qxhyc

• Viking Raid animation (Barefoot)

• Make a Game project (Barefoot)

• Ghostbusters (Scratch)

• Work with various forms of input and output

Inputs Outputs

Keyboard Computer display

Smart screen BeeBot motor

BeeBot Speakers

Microphone WeDo motor

Makey-Makey

Microsoft Kinect

Wedo sensor

Webcam sensor

